Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Comput Methods Biomech Biomed Engin ; : 1-17, 2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-2248989

ABSTRACT

On 19 September 2020, the Centers for Disease Control and Prevention (CDC) recommended that asymptomatic individuals, those who have close contact with infected person, be tested. Also, American society for biological clinical comments on testing of asymptomatic individuals. So, we proposed a new mathematical model for evaluating the population-level impact of contact rates (social-distancing) and the rate at which asymptomatic people are hospitalized (isolated) following testing due to close contact with documented infected people. The model is a deterministic system of nonlinear differential equations that is fitted and parameterized by least square curve fitting using COVID-19 pandemic data of Pakistan from 1 October 2020 to 30 April 2021. The fractional derivative is used to understand the biological process with crossover behavior and memory effect. The reproduction number and conditions for asymptotic stability are derived diligently. The most common non-integer Caputo derivative is used for deeper analysis and transmission dynamics of COVID-19 infection. The fractional-order Adams-Bashforth method is used for the solution of the model. In light of the dynamics of the COVID-19 outbreak in Pakistan, non-pharmaceutical interventions (NPIs) in terms of social distancing and isolation are being investigated. The reduction in the baseline value of contact rates and enhancement in hospitalization rate of symptomatic can lead the elimination of the pandemic.

2.
Nonlinear Dyn ; 110(4): 3921-3940, 2022.
Article in English | MEDLINE | ID: covidwho-2014315

ABSTRACT

The coronavirus disease 2019 (COVID-19) is a recent outbreak of respiratory infections that have affected millions of humans all around the world. Initially, the major intervention strategies used to combat the infection were the basic public health measure, nevertheless, vaccination is an effective strategy and has been used to control the incidence of many infectious diseases. Currently, few safe and effective vaccines have been approved to control the inadvertent transmission of COVID-19. In this paper, the modeling approach is adopted to investigate the impact of currently available anti-COVID vaccines on the dynamics of COVID-19. A new fractional-order epidemic model by incorporating the vaccination class is presented. The fractional derivative is considered in the well-known Caputo sense. Initially, the proposed vaccine model for the dynamics of COVID-19 is developed via integer-order differential equations and then the Caputo-type derivative is applied to extend the model to a fractional case. By applying the least square method, the model is fitted to the reported cases in Pakistan and some of the parameters involved in the models are estimated from the actual data. The threshold quantity ( R 0 ) is computed by the Next-generation method. A detailed analysis of the fractional model, such as positivity of model solution, equilibrium points, and stabilities on both disease-free and endemic states are discussed comprehensively. An efficient iterative method is utilized for the numerical solution of the proposed model and the model is then simulated in the light of vaccination. The impact of important influential parameters on the pandemic dynamics is shown graphically. Moreover, the impact of different intervention scenarios on the disease incidence is depicted and it is found that the reduction in the effective contact rate (up to 30%) and enhancement in vaccination rate (up to 50%) to the current baseline values significantly reduced the disease new infected cases.

3.
Complexity ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-1923333

ABSTRACT

The occurrence of a new strain of SARS-CoV-2 cannot be ruled out. Therefore, this study seeks to investigate the possible effects of a hypothetical imperfect anti-COVID-19 vaccine on the control of not only the first variant of SARS-CoV-2 but also the second (new) variant of SARS-CoV-2. We further examine the rates r and a, escape of quarantined infectious individuals from isolation centers. The control Rc and basic reproduction numbers R0 are computed which gives assess to obtain asymptotic stability of disease-free equilibrium point globally and the existence of a unique persistent equilibrium solution. Numerical results reveal that people infected with the second strain who are vaccinated with an imperfect vaccine are under control but the prevalence of the second variant enhances the prevalence of the first variant. Thus, discovering a vaccine that is effective (to a good extent) for the prevention of variant 2 (new variant) is necessary for the control of COVID-19. Numerical results also reveal that increase in the rate at which individuals infected with the first variant escape the isolation center gives rise to the population infected with the first variant and lowers the peak of the population infected with the second variant. This is probably because individuals infected with the second variant appear to be more careful with their lives and get vaccinated more than individuals infected with the first variant.

4.
Discrete Dynamics in Nature and Society ; 2021, 2021.
Article in English | ProQuest Central | ID: covidwho-1546602

ABSTRACT

In this study, we formulate a noninteger-order mathematical model via the Caputo operator for the transmission dynamics of the bacterial disease tuberculosis (TB) in Khyber Pakhtunkhwa (KP), Pakistan. The number of confirmed cases from 2002 to 2017 is considered as incidence data for the estimation of parameters or to parameterize the model and analysis. The positivity and boundedness of the model solution are derived. For the dynamics of the tuberculosis model, we find the equilibrium points and the basic reproduction number. The proposed model is locally and globally stable at disease-free equilibrium, if the reproduction number ℛ0<1. Furthermore, to examine the behavior of the various parameters and different values of fractional-order derivative graphically, the most common iterative scheme based on fundamental theorem and Lagrange interpolation polynomial is implemented. From the numerical result, it is observed that the contact rate and treatment rate have a great impact on curtailing the tuberculosis disease. Furthermore, proper treatment is a key factor in reducing the TB transmission and prevalence. Also, the results are more precise for lower fractional order. The results from various numerical plots show that the fractional model gives more insights into the disease dynamics and on how to curtail the disease spread.

5.
Adv Differ Equ ; 2021(1): 106, 2021.
Article in English | MEDLINE | ID: covidwho-1079265

ABSTRACT

COVID-19 or coronavirus is a newly emerged infectious disease that started in Wuhan, China, in December 2019 and spread worldwide very quickly. Although the recovery rate is greater than the death rate, the COVID-19 infection is becoming very harmful for the human community and causing financial loses to their economy. No proper vaccine for this infection has been introduced in the market in order to treat the infected people. Various approaches have been implemented recently to study the dynamics of this novel infection. Mathematical models are one of the effective tools in this regard to understand the transmission patterns of COVID-19. In the present paper, we formulate a fractional epidemic model in the Caputo sense with the consideration of quarantine, isolation, and environmental impacts to examine the dynamics of the COVID-19 outbreak. The fractional models are quite useful for understanding better the disease epidemics as well as capture the memory and nonlocality effects. First, we construct the model in ordinary differential equations and further consider the Caputo operator to formulate its fractional derivative. We present some of the necessary mathematical analysis for the fractional model. Furthermore, the model is fitted to the reported cases in Pakistan, one of the epicenters of COVID-19 in Asia. The estimated value of the important threshold parameter of the model, known as the basic reproduction number, is evaluated theoretically and numerically. Based on the real fitted parameters, we obtained R 0 ≈ 1.50 . Finally, an efficient numerical scheme of Adams-Moulton type is used in order to simulate the fractional model. The impact of some of the key model parameters on the disease dynamics and its elimination are shown graphically for various values of noninteger order of the Caputo derivative. We conclude that the use of fractional epidemic model provides a better understanding and biologically more insights about the disease dynamics.

6.
Results Phys ; 21: 103787, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1003032

ABSTRACT

The novel coronavirus disease or COVID-19 is still posing an alarming situation around the globe. The whole world is facing the second wave of this novel pandemic. Recently, the researchers are focused to study the complex dynamics and possible control of this global infection. Mathematical modeling is a useful tool and gains much interest in this regard. In this paper, a fractional-order transmission model is considered to study its dynamical behavior using the real cases reported in Saudia Arabia. The classical Caputo type derivative of fractional order is used in order to formulate the model. The transmission of the infection through the environment is taken into consideration. The documented data since March 02, 2020 up to July 31, 2020 are considered for estimation of parameters of system. We have the estimated basic reproduction number ( R 0 ) for the data is 1.2937 . The Banach fixed point analysis has been used for the existence and uniqueness of the solution. The stability analysis at infection free equilibrium and at the endemic state are presented in details via a nonlinear Lyapunov function in conjunction with LaSalle Invariance Principle. An efficient numerical scheme of Adams-Molten type is implemented for the iterative solution of the model, which plays an important role in determining the impact of control measures and also sensitive parameters that can reduce the infection in the general public and thereby reduce the spread of pandemic as shown graphically. We present some graphical results for the model and the effect of the important sensitive parameters for possible infection minimization in the population.

7.
Results Phys ; 20: 103669, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-974567

ABSTRACT

The new emerged infectious disease that is known the coronavirus disease (COVID-19), which is a high contagious viral infection that started in December 2019 in China city Wuhan and spread very fast to the rest of the world. This infection caused million of infected cases globally and still pose an alarming situation for human lives. Pakistan in Asian countries is considered the third country with higher number of cases of coronavirus with more than 200,000. Recently, many mathematical models have been considered to better understand the coronavirus infection. Most of these models are based on classical integer-order derivative which can not capture the fading memory and crossover behavior found in many biological phenomena. Therefore, we study the coronavirus disease in this paper by exploring the dynamics of COVID-19 infection using the non-integer Caputo derivative. In the absence of vaccine or therapy, the role of non-pharmaceutical interventions (NPIs) is examined on the dynamics of theCOVID-19 outbreak in Pakistan. First, we construct the model in integer sense and then apply the fractional operator to have a generalized model. The generalized model is then used to present the detailed theoretical results. We investigate the stability of the model for the case of fractional model using a nonlinear fractional Lyapunov function of Goh-Voltera type. Furthermore, we estimate the values of parameters with the help of least square curve fitting tool for the COVID-19 data recorded in Pakistan since March 1 till June 30, 2020 and show that our considered model give an accurate prediction to the real COVID-19 statistical cases. Finally, numerical simulations are presented using estimated parameters for various values of the fractional order of the Caputo derivative. From the simulation results it is found that the fractional order provides more insights about the disease dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL